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Abstract:  

The rapid proliferation of IoT devices has led to massive, heterogeneous, and high-speed data generation, thereby straining 

bandwidth, energy efficiency, and real-time processing. Compressive Sensing (CS) is a promising approach considered 

for the transmission load reduction by means of acquiring sparse signals while compressed and containing the information 

in them. Nevertheless, traditional CS mechanisms suffer from complex computation, becoming sensitive to noise and 

incapable of solving dynamic problems in IoT environments. Integration of neural networks into CS-based frameworks 

provides a way to circumvent these hurdles by learning highly non-linear mappings from the compressed observations to 

the original signals for faster and more accurate recovery. Neural network-based CS methods further benefit from the 

intrinsic structure of the IoT data, e.g., sparsity and low-rankness, to improve reconstruction fidelity in the face of noise, 

packet loss, and heterogeneous data. This review further synthesizes the literature on CS-neural network approaches for 

IoT data transmission and reconstruction, discussing relevant architectures, optimization methods, and application areas. 

It brings out research challenges in latency, reliability, energy efficiency, and adaptability. These would usher in future 

directions for the development of intelligent IoT systems that can work efficiently in situations demanding real-time speed 

and resources.    

Keywords: Compressive Sensing, Neural Networks, IoT Data Transmission, Signal Reconstruction, Data Sparsity, Low-

Rank Modeling 

 

I. INTRODUCTION 

The Internet of Things (IoT) is defined as an ecosystem containing myriad interconnected devices, sensors, and systems 

that generate and exchange data continuously. Such networks lend themselves to the monitoring and decision-making in 

real-time within healthcare, industrial automation, smart grid, or environmental surveillance domains [1]. A considerable 

growth in the number of IoT deployments brought a host of unprecedented challenges that include the efficiency of data 

transmission methods, network channel utilization, energy consumption, and the reconstruction of signals in a timely 

manner. Traditional methods of transmission often cannot keep pace with the volume and heterogeneity of data present in 

IoT. Measurements are burdened with high dimensionality, redundancy, and noise and weigh down the communication 

channels, bringing about congestion, latency, and high power consumption. Therefore, the need for transmission-efficient 

methods arose to reduce the communication overhead while maintaining the essential fidelity of signals [2]. 

 

Compressive Sensing (CS), being a technology that leverages the inherent sparsity of numerous real-world signals, observes 

signals in a compressed form with negligible information loss. As fewer measurements are transmitted, CS effectively 

reduces bandwidth pressure and energy demands [3]. Nonetheless, in IoT applications, its efficacy is limited due to 

computational complexity, noise sensitivity, and scalability constraints faced by traditional reconstruction algorithms. 

 

Recently, machine learning, particularly neural network approaches, has received attention in tackling these reconstruction 

problems. Neural networks do well at modeling complex and non-linear relationships between compressed measurements 

and their original forms, thus affording much faster and more accurate recovery [4]. They can model random behavior or 

noise, use structural priors such as sparsity and low-rankness, and perform recovery almost in milliseconds-a useful feature 

for latency-aware IoT applications. Wherein the literature is growing into the integration of CS and neural networks for 

IoT data processing, it investigates end-to-end architecture jointly optimizing compression and reconstruction; domain-

specific adaptations for applications such as remote health monitoring; and lightweight models deployable on the edge 

side. While most of these works report on reconstruction speed and accuracy improvement, there are significant gaps yet 

to be covered. Common limitations of are: dependence on large annotated datasets; robustness issues under highly dynamic 

network conditions; and problems of computational efficiency in model design for low-power IoT nodes [5]. 

 

 The goal of the review is to provide a systematic treatment on existing research on the integration of CS and neural 

networks for IoT data transmission and reconstruction. The discussion revolves around algorithmic frameworks, 
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architectural peculiarities, metrics, and case studies of applications. It then brings out the lagging issues of model 

generalizability, interpretability, and energy efficiency, while looking forward to some emerging ones like federated 

learning, adaptive sampling, and hybrid optimization [6]. The review synthesizes state-of-the-art techniques and how open 

research problems shape modern IoT frameworks that are efficient in communication and stronger in data recovery. The 

ultimate aim is to achieve scalable, energy-aware, and intelligent IoT platforms that can fulfill the requirements of 

increasingly complex and data-intensive environment. Fig. 1 shows principles of compressive sensing. [7] 

 

   

 
Fig. 1: Principles of Compressive Sensing [7] 

 

 

II. LITERATURE REVIEW 

Nimisha Ghosh et al. [1] (2023) provided knowledge of Compressive Sensing (CS) for conservation of energy in 

disconnected IoT environments where only compressed data is transmitted by mobile collectors. While this approach 

suffers reduction in transmission volume and latency, NP-hard joint tree construction and recovery complexity, and loss of 

accuracy at high noise/loss rates become significant impediments. Some heuristic approaches may hold promise, but their 

use in large-scale real-time environments has yet to be undertaken.  

 

Ahmed Mohammed Hussein et al. [2] (2023) Propose Distributed Prediction-Compression-Based Mechanism (DiPCoM)  

in order to allow ARIMA predictions and multiple compression methods to avoid unnecessary transmissions in IoT 

networking. It showed energy efficiency compared to previous approaches but would suffer from errors in prediction in 

dynamic environments, computationally expensive compression, and lower reconstruction accuracy in the mixture of 

streams.  

 

Deepa Devasenapathy et al. [3] (2023) presented enhanced grid-based synchronized routing with Bayesian CS for 

correlated sensor data aggregation, resulting in an accuracy improvement of up to 16.93% and a lifetime enhancement of 

about 22.9%. The limitations include sensitivity to grid-size errors, computational overhead of the Bayesian computations, 

and poor performance with irregular sensing patterns. 

 

B. Lal, et al. [4] (2023) propose a Light-weight CS based ECG monitoring had been developed for energy efficiency and 

security without actually burdening the sensor node with computational complexity. The system offers high compression 

and low energy usage at the edge; however, reconstruction suffers from degradation, particularly under high noise and 

synchronization overhead, with ambiguity in cross-device generalization performance. 

 

Gen-Sen Dong et al. [5] (2023) Used DCGAN together with 1D symmetric U-Net for vibration data reconstruction from 

an accuracy and speed point of view that proved to be better than the rival approaches. Challenges include the requirement 

of a very large dataset, GAN instability, poor robustness under low sampling rates, and limited generalization to unseen 

patterns.  

 

Y. Zhang et al. [6] (2023) propose a method based on  DCT-based lossy compression and CKKS homomorphic encryption, 

a secure and communication-efficient FL system was introduced. High accuracy was maintained at extreme compression, 

but encryption cost a lot computability-wise, in theory secured. 
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X. Tang et al., [7] 2023 applied CS on thermal and acoustic images to reduce CNN training time and to raise diagnostic 

accuracies to 99.39%. Potential weaknesses include a drop of performance with noisy and low-quality data, disputed CS 

sampling rates, and higher complexity introduced by a dual-sensor setup. 

 

C. Sureshkumar et al. [8] (2023) proposed Adaptive Adjacent-based Compressive Sensing (AACS) using sparse matrices 

and fuzzy logic for energy-efficient WSN data reconstruction, thus yielding massive improvements in throughput and error. 

Limitations include the need for accurate location-AACS computation with degraded performance under high mobility and 

fuzzy logic computational cost. 

 

Xiaoling Huang et al. [9] (2023) designed an image encryption scheme based on CS and IWT with chaotic-RSA integration. 

The drawbacks are heavy computational load of RSA, accuracy-sensitive generation of chaotic parameters, and limited 

scalability to large and real-time IoT images. 

 

Alina L. Machidon et al. [10] (2023) review of CS–DL integration for sampling rate reduction, adaptive sensing, and robust 

reconstruction in heterogeneous devices. Identified gaps in standard benchmarks, hardware adaptation, and resistance to 

distribution shifts under latency/energy constraints. 

 

N. Iqbal et al. [11] (2023) design an energy and traffic reduction-bandwidth lightweight CS algorithm for seismic data 

through sensing compressed and reconstructing via DCNN without having any prior assumptions. The SNR of 30 dB was 

obtained with a compression gain of 16; in terms of performance, it surpassed all the existing methods. Some of the 

limitations include huge training data requirements, noise sensitivity, and inferencing expense in low-resource settings.  

 

Nayak et al. [12] (2023) an adaptive fuzzy rule-based CS system based on saliency, and edge features was proposed for 

automatic selection of sampling rate. The method yielded very good performance in terms of PSNR and SSIM redounded 

to the Standard, CCTV, Kodak and Set5 dataset, outperforming all competing state-of-the-art CS methods. Computational 

complexity and the risk of performance drop in the case of highly textured/noisy images stand as roadblocks of this 

approach. 

 

Zhang et al. [13] (2023) a new Chained Secure and Low-Energy Consumption Data Transmission (CS-LeCT) scheme 

was designed that has reconstruction performance much superior compared to the traditional CCS method. Both 

simulation experiment results and theoretical analysis proved the superior performance of CS-LeCT. Security assessments 

further demonstrate that CS-LeCT can stand up to several potential threats, including ciphertext-only attacks (COAs), 

known-plaintext attacks (KPAs), and man-in-the-middle attacks (MiTMs). 

. 

 

Enas Wahab Abood et al. [14] (2023) Presented a CS-based audio compression and encryption system with Gaussian 

random sensing and Moore–Penrose pseudoinverse reconstruction. It reduces size by around 28%, while maintaining a 

high correlation and good PSNR/SSIM values. However, it suffers from concerns about computational load and scalability 

to real-time IoT scenarios. 

 

Vinay Pathak et al. [15] (2023) Designed a hybrid WSN–WBAN architecture using CS for biomedical data, providing up 

to 88.11% compression and reducing consensus time by 24%. It further improves PRD by 34.21%, all while consuming 

low CPU usage. The limitations consist of noise vulnerability, dependency on network connectivity, and scalability 

troubles. 

 

R. Gambheer and M. S. Bhat et al. [16] (2023) Applied CS to CCD/CMOS camera sensors for reduced measurements with 

high SNR on FPGA hardware for IoT imaging. CCD yields 13% power and 15% memory savings under no-light conditions 

at 25.76 dB PSNR. CMOS systems show worse performance in very low light, and embedding hardware complicates the 

system. 

 

S. Chen et al. [17] (2023) developed a CS-privacy-preserving FL scheme with gradient perturbation that safeguards data 

and labels from each other while curbing communication costs. Strong privacy and competitive accuracy were delivered 

with low computation. Effectiveness depends on appropriate perturbation parameters. 

 

Leming Wu et al. [18] (2023) elevated CS-based federated learning by refining the measurement matrix through genetic 

algorithms and through interleaving training and reconstruction, resulting in higher accuracy with large compression ratios. 

Some drawbacks, however, are the computational overhead of GA and the dependency on tuning of parameters. 

 

W. Ma et al. [19] (2023) STRCS was proposed for channel reconstruction with FRI in the angular domain, where 

AoDs/AoAs are estimated from a finite number of channel measurements. They outperformed the existing techniques in 

terms of accuracy and pilot overhead. They stand to lose their viability in highly dynamic or dense multipath environments. 
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Z. Gao et al. [20] (2023) studied CS-based GFMA for massive access by portraying a roadmap from single-antenna to 

large-scale cooperative MIMO and sourced/unsourced access. They pointed out the shortcomings of present random access 

schemes and the major challenges that lie ahead. Complexity of implementation and standardization remain to be 

addressed. 

 

Liqiang Xu et al. [21] (2024) established a method called Mob-ISTA-1DNet that combines deep learning with ISTA for 

adaptive CS compression/recovery of smartphone sensor data. The method performs the reconstruction of sensor 

measurements more accurately and faster than existing methods for various types of sensor readings. They also designed a 

smartphone application whose performance has been validated by one month, 30-volunteer data-set. 

 

R. K. Kaushal et al. [22] (2024) proposed Energy-Efficient Artificial Neural Network-Based Clustering Protocol 

(EEANNCP), which is an ANN-based energy-efficient clustering protocol for WSNs by selecting only one cluster head 

per cluster. The simulation results confirm that this approach proves to conserve more energy than other approaches and 

consequently increases the lifetime of the network. However, its scalability with the increasing size of the network and 

adaptability to dynamic topologies are yet to be tested. 

 

Wang et al. [23] (2024) The OS algorithm combines graph CS and RBM and considers KL divergence as the distortion 

metric to optimize node deployment in task-oriented WSNs, enhancing both reconstruction accuracy and network 

performance with respect to baseline. It can only provide optimization gains if the network conditions are stable. 

 

Luyang Liu et al. [24] (2024) processed experiments with realistic datasets from actual sensors, showing superior 

performance over state-of-the-art CS sampling on STL10, Intel, Imagenette (classification) and KITTI (object detection). 

Achieved classification accuracy improvements of 26.23%, 11.69%, and 18.25% at certain sampling rates compared to 

uniform sampling. Maintained robustness even at very low sampling rates, ensuring essential CV task information 

retention. 

 

Xin Zhu et al. [25] (2024) presented the DCST-based multilayer autoencoder with trainable thresholding, thus reducing 

parameters at the same time improving reconstruction quality. At the very least, the method delivers a 32.35 percent gain 

in quality score on the gearbox datasets. This approach may require fine-tuning when used in other domain applications 

with different data characteristics. 

 

Di Xiao et al. [26] (2024) discuss a Meta-learning-based Compressed Sensing Reconstruction in the Cloud (MetaCSRC), 

which is a restorative end-to-end imaging paradigm addressing such constraints For better security for measurement 

transmission, local differential privacy noise is added to the measurements prior to uploading to the cloud server. 

Experimental results prove that MetaCSRC is superior when it comes to reconstruction speed and accuracy, while also 

providing privacy protection. 

 

Shuai Bian et al. [27] (2024) Proposed NL-CS-Net, unrolling non-local sparse-regularized optimization into a two-stage 

learnable network. Hence, it gave the state-of-the-art reconstruction in MRI and natural-image reconstruction. The benefits 

are chiefly due to high-quality training and appropriate non-local priors. 

 

Bo Liu et al. [28] (2024) Enhanced CNN architecture in IoT domain for art data analysis by usage of deeper layers, batch 

normalization, and dropout. Multimodal sensor/image data integration to provide accurate feedback for art design 

education. For other domains, it needs transformations. 

 

Darmawan Utomo et al. [29] (2024) Utilized ConvLSTM to reconstruct missing geospatial and environmental data based 

on temporal-spatial relationships. Outperformed its LSTM variant in RMSE under multiple missing data scenarios. 

Accuracy is heavily dependent on input data completeness and quality. 

 

Jingyi Hu et al. [30] proposed ADMM-1DNet, which maps the steps of ADMM into a deep network to reconstruct vibration 

signals under heavy ambient noise. It makes the accumulated noise very hard to suppress and hence yields better accuracy 

and feature preservation than all the competing methods and systems. The flexibility allows for diverse applications in 

monitoring. 
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Table 1: Compressive Sensing Techniques for Efficient IoT Data Transmission 

Reference & 

Year 

Proposed 

Method/Model 

Key Features Results Advantages Limitations/Challenges 

Nimisha Ghosh 

et al. (2023) [1] 

Compressive 

sensing with 

mobile 

collectors in 

disconnected 

WSN networks 

Transmits 

compressed 

data from 

sensor subsets; 

mobile data 

gathering 

Heuristic 

solutions show 

promising 

simulation 

results 

Reduces 

transmission 

volume & 

latency 

NP-hard tree 

construction/link 

scheduling, complex 

recovery, accuracy drops 

with noise/loss, 

scalability issues 

Ahmed 

Mohammed 

Hussein et al. 

(2023) [2] 

Distributed 

Prediction–

Compression-

Based 

Mechanism 

(DiPCoM) for 

IoT power 

saving 

Uses ARIMA 

for prediction; 

adaptive 

compression 

techniques 

(APCA, 

differential 

encoding, SAX, 

LZW) 

Simulations on 

real data show 

better energy 

efficiency than 

existing 

approaches 

Improved 

energy 

efficiency in 

IoT networks 

Prediction errors in 

dynamic environments, 

high compression 

overhead, less accuracy 

for heterogeneous 

streams 

Deepa 

Devasenapathy 

et al. (2023) [3] 

Grid-Based 

Synchronized 

Routing with 

Bayesian 

Compressive 

Sensing (GSR-

BCS) 

Exploits 

parameter 

correlations; 

optimizes grid 

size for data 

aggregation 

16.93% 

improvement 

in data 

accuracy; 

22.9% 

extension in 

network 

lifetime 

16.93% better 

data accuracy; 

22.9% longer 

network 

lifetime 

Sensitive to grid size; 

computational overhead; 

less effective in 

dynamic/irregular 

environments 

B. Lal, M. H. 

Conde et al. 

(2023) [4] 

CS-based ECG 

monitoring with 

intrinsic 

encryption 

Lightweight CS 

reduces 

sampling and 

encrypts 

measurements 

simultaneously 

Strong 

compression 

and security; 

power 

consumption 

cut at edge 

Energy 

efficient; strong 

compression 

and security 

Reconstruction 

degradation under 

noise/arrhythmia; key 

management overhead; 

latency on low-power 

MCUs 

Guan-Sen 

Dong et al. 

(2023) [5] 

Deep 

Convolutional 

GAN (DCGAN) 

for vibration data 

reconstruction 

Modified 1D 

symmetric U-

Net generator; 

1D classifier 

discriminator 

Superior 

accuracy and 

speed vs. 

existing 

methods 

High accuracy 

& speed; 

outperforms 

existing 

methods 

Requires large paired 

datasets; GAN training 

instability; less robust 

under low data/high 

noise; generalization 

issues 

Xiaoli Tang et 

al. (2023) [7] 

CS-based Dual-

Channel CNN 

for gearbox fault 

diagnosis 

Combines 

thermal and 

acoustic MSB 

images; 

exploits 

sparsity for 

faster CNN 

training 

99.39% 

diagnostic 

accuracy; 

outperforms 

single-channel 

methods 

99.39% 

diagnostic 

accuracy; 

outperforms 

single-channel 

methods 

Performance drops with 

noisy/low-quality data; 

sensitive to sampling 

rate; complexity in dual-

sensor acquisition 

C. 

Sureshkumar et 

al. (2023) [8] 

Adaptive 

Adjacent-based 

Compressive 

Sensing (AACS) 

for WSNs 

Uses sensor 

coordinates for 

sparse matrix; 

fuzzy logic-

based 

forwarder 

selection 

54.7% higher 

network 

throughput; 

76.9% lower 

routing 

overhead; 44% 

less relative 

error 

54.7% higher 

throughput; 

76.9% lower 

routing 

overhead; 44% 

less error 

Needs accurate location 

info; degrades in 

dynamic topologies; 

fuzzy logic overhead on 

resource-limited nodes 

Xiaoling 

Huang et al. 

(2023) [9] 

CS with Integer 

Wavelet 

Transform 

(IWT) + chaotic 

systems + RSA 

for image 

encryption 

Chaotic initial 

values 

encrypted by 

RSA; chaotic & 

Hadamard 

matrices for 

measurement; 

High 

normalized 

correlation; 

robust against 

plaintext 

attacks 

Robust against 

known/chosen-

plaintext 

attacks; 

imperceptibility 

RSA overhead; 

dependency on chaotic 

parameter accuracy; 

scalability issues for 

large/real-time images 
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info entropy-

based 

initialization 

Alina L. 

Machidon et al. 

(2023) [10] 

Survey on CS 

and deep 

learning 

integration 

Explores design 

patterns for CS-

DL pipelines; 

addresses 

heterogeneous 

devices 

Provides 

guidance; 

identifies gaps 

for practical 

deployment 

Practical 

deployment 

guidance; 

highlights 

research trends 

Lack of benchmarks; 

hardware heterogeneity; 

robustness under 

distribution shifts; 

latency/energy tradeoffs 

on edge 

N. Iqbal et al. 

(2023) [11] 

Standalone 

lightweight CS 

for seismic data 

with DCNN 

reconstruction 

Exploits 

sparsity for 

compressed 

sensing; DCNN 

for 

reconstruction 

without prior 

data stats 

~30 dB SNR; 

compression 

gain of 16 on 

real-field data; 

outperforms 

existing 

techniques 

Energy 

efficient; 

adaptable to 

diverse datasets 

Requires sufficient 

DCNN training data; 

degradation under 

extreme noise; deep 

learning inference burden 

in field 

Vinay Pathak 

et al. (2023) 

[15] 

Hybrid WSN 

based on WBAN 

for biomedical 

data with CS 

Achieves 

higher 

compression 

ratio and PRD; 

reduces 

consensus time 

and CPU usage 

88.11% higher 

compression; 

34.21% better 

PRD; 24% 

reduced 

consensus 

time; low CPU 

usage 

Cost-effective; 

efficient data 

transmission 

Degraded in high noise; 

needs stable 

connectivity; scalability 

issues 

R. Gambheer 

and M. S. Bhat 

et al. (2023) 

[16] 

CS for CCD and 

CMOS sensors 

with FPGA 

hardware 

implementation 

New sampling 

scheme and 

sparsity-

inducing 

transform; 

evaluated under 

various lighting 

13% power 

saving; 15% 

memory 

saving; 25.76 

dB PSNR for 

CCD in no-

light; CMOS 

fails in no-

light 

Low-power 

embedded IoT 

imaging 

CMOS sensor 

limitations; scalability & 

real-time issues not 

detailed 

Z. Gao et al. 

(2023) [20] 

Survey on CS-

based grant-free 

massive access 

(GFMA) in 

communications 

Reviews 

evolution of 

massive access 

paradigms; 

highlights 

challenges and 

future research 

Identifies 

roadmap and 

gaps for 

GFMA 

Comprehensive 

survey of 

massive access 

with CS 

Hardware and 

algorithmic challenges; 

open research issues 

R. K. Kaushal 

et al. (2024) 

[22] 

EEANNCP: 

Energy-Efficient 

ANN-Based 

Clustering 

Protocol for 

WSN 

ANN-based 

cluster head 

selection; 

energy-efficient 

clustering 

Substantial 

energy 

conservation; 

extended 

network 

lifespan 

Energy 

efficient; 

prolongs 

network 

lifetime 

High computational cost 

W. Wang et al. 

(2024) [23] 

OS algorithm for 

node 

deployment in 

task-oriented 

WSNs using 

graph CS and 

RBM 

Network 

partition into 

subnetworks; 

graph CS; 

Restricted 

Boltzmann 

Machines; 

brainstorm 

optimization 

Reduced 

reconstruction 

errors; 

enhanced 

network 

performance 

Efficient sensor 

selection and 

fusion 

High computational cost 

Xin Zhu et al. 

(2024) [25] 

DCST layer 

replacing linear 

layers in multi-

layer 

autoencoder 

Trainable 

DCST filter; 

hard-

thresholding 

sparsification; 

Quality score 

improvements 

2.00%–

32.35% on 

gearbox 

datasets 

Reduced 

parameters; 

improved 

reconstruction 

accuracy 

Limited dataset training 
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fewer 

parameters 

Di Xiao et al. 

(2024) [26] 

MetaCSRC: 

meta-learning 

CS 

reconstruction in 

cloud 

Adaptive 

sampling 

network on 

client; deep 

meta-learning 

convolutional 

network on 

cloud; local 

differential 

privacy 

Excellent 

reconstruction 

speed and 

accuracy; 

enhanced 

privacy 

protection 

Offloads 

computation to 

cloud; privacy-

aware 

Cloud dependence 

 

 

III. NEURAL NETWORK APPROACHES FOR CS RECONSTRUCTION 

 

Neural network approaches for Compressive Sensing (CS) reconstruction have evolved from conventional architectures to 

advanced deep learning-based solutions, offering significant improvements in speed, accuracy, and adaptability. 

Conventional CS reconstruction methods, such as Basis Pursuit, Orthogonal Matching Pursuit, and iterative shrinkage-

thresholding algorithms (ISTA) [20], rely on optimization techniques grounded in mathematical sparsity priors. While 

effective in many scenarios, these methods are computationally intensive, sensitive to noise, and less adaptable to complex 

or heterogeneous IoT data. Deep learning-based reconstruction overcomes these constraints by learning non-linear 

mappings between compressed measurements and original signals directly from data, removing the need for hand-crafted 

priors. Convolutional Neural Networks (CNNs) have been widely adopted for CS due to their ability to capture local spatial 

features efficiently, making them particularly effective in image and sensor data reconstruction. Recurrent Neural Networks 

(RNNs), including LSTM and GRU variants [21], extend this capability to sequential or time-series data, enabling accurate 

recovery of IoT signals such as environmental, vibration, or biomedical readings [22]. More recently, Transformer-based 

models have emerged, leveraging self-attention mechanisms to capture long-range dependencies and contextual 

relationships within the compressed measurements, thus improving reconstruction quality in highly complex or structured 

datasets. Hybrid optimization strategies, such as deep unfolding, combine the interpretability of classical iterative solvers 

with the learning power of neural networks, mapping each iteration step into a trainable network layer for faster 

convergence and higher accuracy [23]. Additionally, learned sampling techniques integrate trainable measurement matrices 

into end-to-end architectures, optimizing both the compression and reconstruction processes simultaneously. This joint 

optimization ensures that the sampling strategy is tailored to the data distribution, maximizing reconstruction fidelity while 

minimizing the number of measurements. Together, these neural network-based approaches mark a paradigm shift in CS 

reconstruction, enabling real-time, energy-efficient, and highly accurate recovery for IoT applications across diverse 

sensing environments [24]. 

 

IV. INTEGRATION OF CS AND NEURAL NETWORKS IN IOT SYSTEMS  
 

When Compressive Sensing (CS) meets Neural Networks (NNs) in IoT, it provides data transmission and reconstruction 

pipelines that address bandwidth constraints and also lack of computational capacity. Central to this integration are end-

to-end architectures that jointly optimize sensing (compression) and reconstruction processes into a single framework. Such 

architectures eschew fixed measurement matrices and separate recovery algorithms in favor of trainable sensing layers 

working in tandem with deep reconstruction networks, thereby allowing the system to optimize sampling methods tailored 

to a data distribution or application [25]. This synergy tremendously reduces the maximum number of measurements 

required while maintaining or improving reconstruction accuracy. The corresponding adaptive and application-based 

framework further fine-tunes the CS–NN models based on domain requirements, that is, environmental monitoring, 

biomedical diagnostics, structural health, or industrial process control. Domain priors, sensor characteristics, or some 

specific noise profiles usually figure into application-aware frameworks, thus ensuring robustness under varying operating 

conditions. However, the deployment environment itself counts a lot [26]. The choice of implementing on the Edge, Fog, 

or Cloud introduces a set of trade-offs with respect to latency, energy consumption, and available processing power. Edge 

computing shall run lightweight CS–NN models in IoT nodes or at gateways minimizing transmissions and enabling almost 

real-time analytics. Fog computing pushes processing one layer further into the network to provide a balance between 

computational load on the devices and centralized servers, thus reducing latency involved. Perhaps cloud implementations 

can assume complex computational tasks involved in reconstruction, enabling more advanced deep learning architectures 

and large-scale analytics while releasing the IoT devices from heavy computation [27]. This choice also depends on how 

large the data are, privacy requirements, available infrastructure, and latency constraints imposed by the application. 

Together, the tight integration between CS and neural networks at levels of end-to-end, adaptive, and distributed computing 

paradigms has the potential to revolutionize the scalability, energy efficiency, and resilience of real-world data transmission 

challenges for IoT systems [28]. 
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V. APPLICATION DOMAINS 

 Remote health care monitoring: 

CS–NN systems transmit biomedical signals, e.g., ECG, EEG, and vital signs from wearable or implantable devices, with 

minimized bandwidth while preserving diagnostic quality. Neural networks maximize reconstruction quality, even under 

noisy or lossy channels. This has direct implications in telemedicine for continuous, real-time patient monitoring while 

requiring minute energy consumption on the device itself. 

 

 Smart Grids and Industrial IoT: 

In smart grids, CS reduces the amount of high-frequency sensor and meter data, while NNs reconstruct and predict system 

states for forecasting demand and fault detection. Industrial IoT applications gain from mitigated overhead cost of 

communications and accurate recovery of vibration, thermal, and process signals. This mixture brings operational expense 

down and downtime up [29].  

 

 Environmental and Structural Monitoring.... 

CS enables sparse sampling for large-scale sensor networks that measure parameters such as air quality, temperature, soil 

moisture, or structural vibrations. NNs reconstruct missing or compressive data with precision so that executive-level 

decisions can be made in cases of anomalies or structural degradation on time. Thus, remote scalable monitoring in an 

energy-constrained environment is made feasible. 

 

 Intelligent Transport and Smart Cities: 

Vehicle, traffic, and infrastructure sensors produce enormous data streams that CS compresses for low-latency transmission 

to control centers. [30] NNs reconstruct and analyze data for congestion prediction, accident detection, and infrastructure 

planning. Such systems permit better mobility, safety, and sustainability within the city. 

 

VI. CONCLUSION 

Combining Compressive Sensing with neural networks depicts a cutting-edge avenue in IoT data transmission and 

reconstruction, thereby strategically addressing bandwidth and energy consumption issues along with latency constraints 

and still guaranteeing a high reconstruction accuracy. In CS, the transmission is reduced by exploiting the sparsity of 

signals, while neural networks recover effectively, adaptively, and quickly in the presence of noise and data loss. State-of-

the-art research spells considerable gains in efficiency and scalability, especially when domain-specific priors such as 

sparsity or low rank are embedded in learning architectures. Nevertheless, many issues remain of concern, such as large 

annotated datasets, heavy computation, and model interpretability for safety-critical IoT applications. In addition, most of 

these solutions are not compatible with dynamically changing network conditions, heterogeneous data types, and extreme 

resource constraints at the edge. Future research should investigate lightweight and adaptive neural architectures, transfer 

learning for limited data settings, and hybrid optimization strategies balancing performance with computational cost. 

Standardized benchmarks and operating studies will serve as a bridge to close the gap between theoretical potential and 

real-world application. Filling these gaps will propel CS–neural network frameworks as one of the fundamental enabling 

technologies for next-generation realization of IoT-based networks toward the realization of reliable, secured, and 

intelligent data-driven decision making in various application domains.          
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